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1.Introduction”

In the context c¢f a general form of the multiveriate linear model, we censider
a scquence { Xi = (Xli,...,xpi)',iz_l} of independent random vectors (i.rv) with

continuous cunulative distribution functions (cadf)
F,(x) = PLX; <x} =F(x- o Bc;)ui2lxe RP, p >1, (1.1)

where o = (al,..., up)' and 8 = (( Bjk))j=l,.. o (@ > 1) are

')pak:l"-'9
unknown parameters, “and c; = (cli,...,cqi)',iz_l are vectors of known regress-
ion constants.The form of the cdf F is not assumed to be specified.By reference

to the usual canonical reduction of the multivariate linear hypothesis [viz.,

Anderson(lQSS),Ch.8:], we consider the following. We partition

§ = él’ §2)’ ql+q2 =q, qLi 0 and qz = (68 - Gz l
pPXq PXq; PXq, i
and consider the null hypothesis

Hy: 8, =0 against the alternative Bt B, 7 0. (1.3)
Note that whenever q; is > 1, both HO and Hl are compoéite hypotheses.

For the particular case of q = 0 1.e.4 for HO: B = 0, the }i are identically
distributed (i.d.) wnder HO and a class of conditionally as well as asymptotic-
ally distributicn-free'rank order tests has already been studied by Puri and
Sen(1969). For 9 > 1, under HO: §2 =‘9 , the §i are no longer i.i.d., and this
invalidates the approach of the above mentioned paper. In fact, in such a case,
genuinely distribution-free rank order tests may not generally exist. In the
univariate case (i.e., for p=1 ), this difficulty has been circumvented in
some specific problems by Sen(1969) and Puri and Sen(1973) by using suitable
aligned rank order tests where the alignment is based on rank order estimates
of the nuisance parameters.This approach is systematically explored and developed
here for the gencral multivariate lincar model , and, basically, the theory of

rank order estimators of regression parameters, developed in Sen and Puri (1969)

and JureCkovid(1971), is employed here for the estimation of the nuisance




L)

paraneters (i.e., 51) and incorporated in the construction of suitable aligned

rank order statistics on which tests for HO: @2 = 0 arc bascd.In the wunivariate
parametric case, the classical likelihood ratio test possesses some (asymptotic)
optimality properties. The picturc is somewhat dif{ferent in the multivariate
general linear models where the likelihcod ratio tests may not perform wuniformly
better than others, even asymptotically. However, under quite gencral regularity
conditions, the Wald-optimality (viz., best average power and the most stringency)
applies to the likelihood ratio type tests. In the nonparanetric multivariate
problems too, a variety of tests is available in the literature [viz., Puri

and Sen(1971):}, and some of these can be adapted for the general linear model
under consideration.Among other possibilities, we consider here a class of

rank order tests having some analogy with the likelihood ratio type tests.For
such rank tests, it is possible to develop distribution fhcory in some closed
forms comparable to those of the likelihood ratio tests and permitting an
asymptotic comparison of these tests for local alternatives.

The proposed rank order tests for HO are considered in Section 3 following
the preliminary notions and basic assumptions in Section 2., Section 4 deals with
asymptotic comparisons of parametric (mostly, normal theory and likelihood ratio)
and rank order tests. Asymptotic optimality of the proposed aligned rank tests
is also considered in this section. The last section deals with a special case
of (1.3), namely, testing the hypothesis of parallelism of several (multiple)
regression surfaces, which turns out to be the multivariate multiparameter
analoguc of Sen(1969).

2. Preliminary notions

A N S e

let R,. = o

T -l u(.\'j.1 - st) (where u(t) = 1 or 0 according as t is > or <0)

be the rank of in among the Xj<’ =l 000y E0T 1=l , ¢y j=150c05p. Since F
is continuous, ties among the observations may be ncglected, in probability.
For each j(=1,...,p) and n(> ), we consider a set of rcal valued scores

— PN N

ﬂéJ)(J),---,nﬁJ)(n), generated by a score fW?QEiQH.¢j(“)'O <u <1, in cither




of the following ways:

aéj)(i) = 951/ or Eo (U ), i=l,..,m5=l,000p,  (20)

ni
where ¢j (u) is assumed to be square integrable inside (0,1), and Unl e e
Unn are the ordered random variables of a sample of size n from the rect-
angular distribution over (0,1). Our proposed testing procedure is based

on the following type of rank order statistics:

" . n = o ).
Sa = (g, 51975 Sy 5k = Li=1(0k ~ Sad3y (Ry4) (2.2)
- =F ; 1
where S ° M Lril=l Chi? for k=1,...,9; 3*1,...,p. We denote by
- -1 .n
) E
~n i=1 ~i

Following Hajek (1968) and Hoeffding (1973), we assume

that for every j(=1,...,p) ,

(1) (2)
0. = . - 2.3
QJ(U) caj (u) coj (u) (2.3)

(s)

where c.)j (u) , s=1,2 1is absolutely continuous and ncn-

decreasing in ue€ (0,1) and

. (s) =L
r ‘CD (u)l[u(l-—u)'_l Zdu < wm ¢ S=l,2 : j:l'._.'p . (2.4)
a.o J
Denote
e = @ tajaw 5 - J= LoD » (2.5)
:‘ ‘0 J
and
Aes2 (F) = r?m.(Fr.,(x))::.,(F .14 (y))aF (x,y) =% ¢ ., (2.6)
33 S Yy 1 L3] . R & oY ol £33t Y4vyr OO

where F[j} (x) and F[jj'] (x,y) are the marginal cdfs of the

jth and the (j,j')th components respectively. Assume




A(F) = (( Ajj,(F))) is positive definite(p.d.) and finite. | (2.7)
We also denote by

- e . t
Co = (i) = 25 - T8 G

~n
- 3 i (2.8)
i (( Zj_:l(cki - Clm) (Ck‘n i Ck'n) ))
and assume that
C, is p.d. for every n 20, (2.9)
and there exists a p.d. and finite matrix C, such that
-1
n gn > S asn > =, » (2.10)
Further, we assume that
€ = cgl) - cgz) y for 1 = L,.0.,0, (2.11)
~i ~i ~i

where for each k (=1,...,q) and s( =1,2), cii) is non-decreasing in 1i.
This assumption is a slightly simplified version of a parallel assumption
made by Jureckovd (1971) . For q =1, (2.11) is not necessary.

Finally, we assume that for every e >0, there exists an integer n,

= no(e), such that for n > nge

—

=1

n C max

- 2
nkk > €11 l% " S
Regarding the c.d.f. F, we assume that for each j(=1,...,p), the

¥, Bl o ovitte (2.12)

marginal c.d.f. F_.
. )

function (p.d.f.) f[j] with a finite Fisher information

has an absolutely continuous probability density

I, = I(f,..) = £ {(d/dx)log £ j](x)}zdF %)y 5=1,..0,pe  (2.13)

e ) .
] U] L 0]

As has been mentioned in Section 1, our testing procedure rests on
some aligned rank order statistics. To explain the alignment procedure,
we nced the following notations.

let B = ((bjk))j=1,...,p;k=l,...,q be a real matrix, and we write

B By g; }) where g; = (bj1seeeiby)s foT j=1,...,p. Let then

- ey

i
|
i
|
|
|




X, (B) -Bc = (\ (bl), cesX i(? P for 171,500 (2.14)

Ry; (B) = Rji(gj) = Ipuly; ()¢ X5 (3)), i=1,... m5j=l,...,p, (2.15)

so that R (B) is the rank of X (b among X (b )5571,...450, for i=1, J10s

|
!
i

Now, rcplacc the Rji in (2.2) by ji(?j) for 1—1,...,n, j=1,...,p and i

denote the corresponding matrix of rank order statistics by

S,® = (€5 (2.16)

I Jk(b )))] ) SRR T S
Note that §n(§) in (2.16), viewed as a function of the pq elements in B,
generates a pq-dimensional stochastic process (on RP4 ). We shall make use :
of the same in the next section to introduce the proposed aligned rank

order statistics. . 1

~~~~~~~~~~~~~~~~.~~~~~~ At e g g e g g g

As in (1.2), we introduce the following partitionments: i

B e (gl ’ §2 ) > C (Cl(l)’ C. rz)) y 3= l,...,n. (3-1)

~

PXq  pXd; pxq, qxl q;x1 - q,xl !

Then, under HO in (1.3), we have |
Fi(§) = F( 5 b 9'- = ngi(l) ), i=1,...,n. (3.2)

!

|
First, we proceed to estimate the nuisance parameter (matrix) Bl for

|

!

1

the model (3.2). For this, we consider the pXqy matrix

Saq) Bpr® = (S, 5 B8, ; (3.3)

=1,...,p;k=1,...,q1

where

% 5 T -
(?J I (bjl"“,b 0y¢.4,0), j=1,...,p. (3.4)

jay’
Now, under (3.2), §n(l)( gl,g) has the same distribution as of §n(l)(9’9)
under the hypothesis that 8 = 0; for the latter case, we may use the results i

of Puri and Sen(1969) and obtain the following: (a) under (3.2), §n(l)( §1,9)

has expectation 0 and dispersion matrix




gn(ll) 2 gn(lZ)

where C_ = {3.5)
=3 C £t
~N (2]) ~N (¢.2)

AF) 0 G an

gn(ij) is of order inqj , 1,j=1,2 and @ stands for the Kronecker product,
and (b) as n»»
-k
L™ 5,0y 80 ) = Ny @ 2698 gy ), (3.6)

where g(ll) is the upper SIRCH principal minor of C, defined by (2.10).
To estimate @l, we adopt the alignment procedure studied in detail by

Sen and Puri(1969) and Jureckova(1971), and define

q
- . P 1 169} Pl
Pn {gl : Zjﬁl 5o Sn,jk(bj ¥ | minimum } . (3.7)
Then, our estimator of ?1 , under the model (3.2), is given by
gl,n = centre of gravity of Pn . (3:8)

By arguments parallel to those of Juredkova’ (1971), it

follows that

sup ||, - 8 180, a e ‘ 3.9
. GD"'l ~l,n! < S na ( )
~3 T
1/ ~
£(n’[2 - ] T(F) ®
sy o © Byl -.,N;xq(o, TF)@C 1y)) (3.10)
where
T(F) = ((1,.,(F))) = e PV/BAL L) 3.11
e 33 ((k33 (F)/ 3 j,,) ( )
and

Aj = ‘l (d/dx):oj(Frj}(x) )dF‘[j.1 (x) , Julecessp « (3.12)

-~

et e e g . e — e e & . Y




Under thé model (3.2), 51 5 is a translation-invariant, robust, consis-
i ’
tent and asymptotically normally distributed estimator of B]. We use the
same for our alignment process and consider the following aligned rank order

statistics:

A
§n(2) = ((Sn,jk))j'-'l"' < 'p;kqu-#-l, S ’q (3. 13)

where

wn >

= n b (J) N 1= o= .
n,jk Zi"l(ckj Ckn)an (Rji)’ j=1,...,p;k ql+1""’q’ (3.14)
and the aligned-ranks are defined by

R.. = R ( 8

55 By no 0) for i=l,...,n; j=1,...,p. (3.15)

To introduce the proposed test statistics, we first define

((m ));

n Jjitn?g,3'=l,...,p
(@t e ;J)(R Dal’ )(R D -ada0 ) a6
where ; i
5§31 = a7t a0y, for jei,...0p. (3.17)

Also, replacing Rj by RJl and Rj'i by Rj‘i for 1=1; ouvyi il 3,3 =L, 50 5P

in (3.16), we dencte the corresponding matrix by

M= . 3.18
L (( mJJ 195,5%=1,...,p (3.18)
Let then
* g a 3.19
% *%e2 " Sey San hhaz (3.19)
~ ~ *
§n = yn @ En (of order Pa, X pa, ) (3.20)
ﬂn oA Sn yjk n J'L')) lyeensPik k' ql+1, en eyl (3.21)

o m

where “n is also of the order P4, X pPq;- Then, our proposed test statistic

is




k a0 !
‘Qn = TrH, B ) (3.22)
_ P P q q - - ~jj' *KK'
Ej=1%j'=1 Pkeq+1%k'=q,+1 0, 58n,5'k' T Cn
where
a9 ~53! - *LK ! )
h = RO = (
~In (C T J)J,J'=l,...,p and gn ((Cn ))k.k'=q1+l,..,q (3.23)

The analogy of f‘n to the classical Lawley-Hotelling trace criterion for
the nultivariate analysis of variance (FMANOVA) problem can readily be
identified. Whereas the latter is based on the least squares estimators of
the parameters involved in the model, our‘,Cn is based on the corresponding
rank order estimators of the nuisance parameters. Further, the asymptotic
equivalence of the Lawley-Hotelling trace and the likelihood-ratio criteria
(under the normal theory model) is well-kncwn [viz., Anderson (1959),Ch.8}.

In the same spirit, we could have proposed an alternative test-statistic

~

o _ A
= IS /1, + G I (3.24)

where ||A]] stands for the determinant of the matrix A. By using Theorem 3.1
of JureCkovd (1971) and proceeding as in the proof of Theorem 3.3 of Puri,

Sen and Gokhale (1970), it can be shown that "Cn and —2]og£g are asympto-
tically equivalent under the null hypothesis and for local alternatives too.
As such, in the sequel, we shall be mainly concerned with the statistic "Cn'

In the remainder of this section, we show that Under HO: 8, = 0, when

the assumptions of Section 2 are met, ‘Cn has asymptotically a chi-square
distribution with Pa, degrees of freedom. This provides an ADF (asymptotically

distribution-free) test for HO.

Lemma 3.1. Under IIO: By = 0 and the assumptions of Section 2,

M - *_
n gnl Ly 2 Imecd ™, asn »w (3.25)
where
vhere C C
; " Can Caz i
C =Cay " Sy San Sani t” + (3.26)

Cen e
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Proof. By virtue of (2.10), to prove (3.25), it suffices to show that

M B, as nae (3.27)
~ -~ 2
Also since m,., = m,. = (n-1)_ { )(1) _a(:>- ?
JJ .n JJ.n 4
- kjj(F) = xjj by (2.1) and some routine computations, we
need only to show that for every 3J#3’ ,
Bl R aCiE Ghen B Bolas (3.28)
$3%.n " 2447 0
By assumption (2.3), (see also Hajek (1968), section 5)

for ever ¢ >0 , there exists a decomposition
y P

(2)

(i) (3)
a) =@ (ay 9.  (a¥ = 9. fa) ,
CpJ wj ¢J J
where wél) is a polynomial, :;2) and 0;3) are n
decreasing, and
3 1
z ( Fw (u)T du < e ij A R e

~

Using (3.29) we decompose mjj"n into 9 terms. Usi

’

Cauchy-Schwarz inequality for the eight terms for whi

least one factor is non polynomial along with (3.30),

that to prove (3.28), it suffices to take uj = v(l),

(1)

| S 5

Since the Oj are absolutely continuous and are o’

~

for them, the corresponding mjj can be written as

0
00

£ r (”(u 509) op(”(u..(mdn

-0

~
njj,(x,y) + 0(1) where “nj

Q= i,
F= 1 smcin D
on-

(3.30)

ng the

ch at

it follows

l<j<p
vhontials,

is the sample

(3.29)




J1

c.d.f. for the aligned observations on the jth variate, j=1,...,p and “njj'

is the bivariate sample c.d.f.(for the jth and j'th variates) for these
aligned obscrvations. For the aligned vectors )~(i (,ii} »0), i=1,...,n, the sample
c.d.f.'s are denoted by ”nj and Hr*l_jj' 3 200 §(F 3°) = Vy....0. Then, by (2.14},
(3.10) and the continuity of the parent c.d.f., it follows that as n »» ,

sup{ | i\injj j
Also, note that the QQ) are bounded, continuous functions. So, first replacing
;]n by Hn, lAin by H;: and then using Theorem 4.1 of Puri and Sen(1969), the
desired result follows. In fact, it can be shown that (3.27) hoids a.s.

8

Lemma_3.2. Under H: 8, = 0 and the assunptions of Section 2, as n » « ,

B ) ) B
n S ) - Sy (8O * AL - BDC ) — 0 (B.3D)

where defining the AJ. by (3.12},

A = Diag( Al""’ Ap) ‘ (3.32)
The prcof follows as a direct multivariate extension of Theorem 3.1
of Juretkova (1971), and hence, the details are omitted.
By noting that cf.Jureckova (1971) §n(1)( gl,g) = gp(l), the following

lemma also follows from Theorem 3.1 of Juretkova (1971).

Lemma 3.3.Under the hypothesis of lLemma 3.2,as n >«

Gy (80 - ACE - 8) Gy b B0 6u3)

From (3.31) and (3.33), we arrive at the following

Lemma 3.4. Under the hypothesis of Lemma 3.2 , as n =+

~

=3 (2 -1
S0 " Sy (89 Sy Er® Gan SYant B0, (.3

where §n(‘)( {jl,(}) is defined as in (3.13)-(3.14) with the Rji being replaced
2% Byl Byl
*
Consider now “O : 8 = 0, Then, wnder HO: @2 = 0, the pair ( §n(l)(@1’9)’

® .
§n(2)( 51,9) ) have the same joint distribution as that of §n under Hy » and since,

[v'x:. y Puri and Sen (190‘))] , the latter is asymptotically multinormal with

* *
y (x,y) - I{n.].,(x,y)f LKy E R2 } =+ 0 a.s.; for every j#i"=1l,.4:30




mean 0 and dispersion matrix -

AF) O C (3.35)

it follows that under ”0 im (E.3),

% =1
oz(n { §n(2) (§1:9) E §n(])(§1’0) gn(ll) gn(]_Z) )

~

(3.36)
gass g
=2 Fpua N B MRS oy Sonbantag’ -

Hence, by (3.34) and (3.36), we obtain that under HO ane (.3, as m > @

_1/2 A foks *®
‘f(n S )('pxqz( 0, A(F) B C). (3.37)

From (3.37), Lemma 3.1 and the asymptotic distribution theory of quadratic
forms associated with asymptotically multinormal vectors, it follows that
under the hypothesis of Leima 3.3, J:n has asymptotically a chi square
distributicn with Pa, degrees of freedom.
Thus, the proposed ADF test of size a(0 < a <1) is as follows:
Let X; be the upper 100a% point of the chi square c.d.f. with pq
Gasd 2
degrees of freedom. Then, the null hypothesis ”0 in (1.3} is accepted or
: 303 s 2
rejected according as is < or > 3 :
’ - £n o APQz:O‘
4. Asymptotic comparison with parametric counterparts
We confine ourselves to local alternatives for which the power of the proposed

tests are away from 0 and 1. We consider a sequence {Kn} of Pitman-type

alternative hypotheses, viz., for some (fixed) non-null v,

) e oM@ . <% u
R R L R T R

for which an asymptotic power function can be traced and compared with the

(4.1)

parallel function for some parametric tests for the same problem.

For the normal thcory model (where the underlying c.d.f. F is assumed to
be multivariate normal), classical parametric ( likelihood ratio, Lawley-
Hotelling trace or the largest characteristic root criterion of S.N.Roy -

sec Chapter 8 of Anderson(1959)) tests are all based on the least squares

estimators. Sen and Puri (1970) have studied the asymptotic propertics of




b

13

.

the likelihood ratio (as well as the Lawley-Hotelling Trace) statistic when
the underlying F is not necessarily normmal. It follows that if F possesses
a finite and positive definite dispersion matrix ZI(F) = ((cov(x.i,.\'j,i)))

in (1.3), L (= -2log-likelihood ratio criterion

0 1

when F is assumed to be ncrmal) has asymptotically a chi-square disdtribution

= (( Ujj,(}:))), then, under H

with P4, degrees of freedom. Also, under {Kr} in (4.1), Ln has asymptotically
a non-central chi square distribution with Py degrees of freedom and non-

centrality parameter

By = Trace(?: (Z(F) o E*)_l ¥y (4.2)
where
= (O Y55, 50m1, L pik k=g 1, ey (4-3)
and the ij are defined in (4.1).
Consider now a sequence of alternatives {K:} , specified by
KsB=(0n" Y, ), Y, defined in (4.1). (4.4)

Then, ( §n(l) (§1,9), §n(2)(§1’9)) , under }\n , has the same jecint distribution
as that of Sn under I\’; . Noting this fact, using the results of Puri and Sen
(1969) and our lemmas in Section 3, it follows by scme routine computations

that under{ Kn}, asn > o,

Lo 500 = 2 (e 2 8 g, @9
From Lemma 3.1 and (4.5), we conclude that wunder {Kn} 3 ’Cn has asymptotically
a non-central chi square distribution with Pa, degrees of freedom and non-
centrality parameter
AaC = Trace( T ( T(¥) 8 C9)
where I(F) is defined by (3.11).

il (4.6)

From (4.2) and (4.6), we conclude that the Pitman asymptotic relative
efficiency (ARE) of 7 with respect to Ln is given by

e 1, = b /8y = tr@TCMEC) /arTE®Ee) ™) @.7)

which depends on T, F and C*, If F is multinomal and for £n we use the normal

— AT . e s TR e —a e s TR AT




scores (i.c., ‘all the ¢. being the inverse of a standard normal c.d.f.), then,

it can eosily be checked that r(l) Z(FJ, and hence, (4.7) reduces to 1l,i.e.,
the aligned rank order normal scores test and the likelihood-ratio test are
asymptotically power-equivalent for normal F and local alternatives in (4.1).
However, in general, for arbitrary F, ?ﬁ,L is bounded as follows:

ch,( IOITM ) £ ey 2 ch(EOTTEN, (4.8)
where chj(A) stands for the jth (largest) root of A for j > 1. The bounds in
(4.8) may be studied as in Sen and Puri (1967) or Puri and Sen(1969), and
hence, the details are omitted. For testing simple hypotheses in multivariate
linear models, Puri and Sen (1969) have stuied (in their Theorem 6.2) the
optimality of rank order tests for local alternatives. In passing, we may
remark that under the same set of regularity conditions as iﬁ Theorem 6.2
of Puri and Sen(1969), J:n has asymptotically the best average power with
respect to suitable surfaces in the barameter space (of XZ)’ it has also
asymptotically the best constant power on such surfacés and, finally, it is
an asymptotically most stringent test.
As a multivariate generalization of the univariate problem treated in Sen
(1969), we consider here the following. Let §£k), k=1,...,nk be ny independent

rv's with continuous c.d.f.'s

g k
PR = px® < x) = Fix g - gy o8, (5.1
for i=1,...,nk, k=1,...,5(> 2). We desire to test the null hypothesis
HO: §1 R gs = B (unknown) (5.2)

where Arreees O and 8 are treated as nuisance parameters. If we let 3
?1 + gz , k=1,...,s (so that él = 9), q = st ( where each of the c( )
(5.1) is a t-vector), then, we are in a position to use the theory develoved
in Sections 3 and 4. Thercfore, without giving the details of derivations, we

present the main results in this case as follows.

"~




Based on the N observations in the kth sample, we define Sﬁk) as in (2.2)

b

and S(k)(B) as in (2.14)-(2.16). let then n = n. +...+n_ and
~nk ~ 0 S

S (B = -IfS s(k) (B) for B ¢ Rp'C (5.3)
Under ”0’ we estimate the comwon B as follows: as in (3.7)-(3.8), we let
Pn = | B : 7? 1 L ll i Jm(bJ)] = minimun} ; (5.4)
§n = centrc of gravity of Pn . (5.5)
Let then
sk - s(k)( B) , kelyeeesSs (5.6)
~nk
(&) (k) s ) ;
gnk (s l\,_]r n s r') il e A Dy =l P (5.7)
(K1, ¢k (k)_ ® _ <
gnk 1—1( En )( 121 n )! (5-8)
~ -1 k . PN A 1\ Wl
M, = @es) i, Zl]fl{ang)(R( )y - Igi)}{aéi )(RJ.(,i)-arEi )} )3;(5.9)
“ M (k) 2
6 M 8C™ for k=1,...,s, (5.10)

s SRR e
where the C and 5#3) are the averages of the regression vectors and the

scores, and are defined as in Section 2; Rfk) is the rank of Xfﬁ) ) lé jr Ef)

among the ny aligned observations on the jth variate in the kth sample, for

i=1,...,nk, j=l,.¢.,p; k=1,...,s. Then, the aligned rank order test-statistic is

&) g
,(‘,n ZpapTrace( B2 G Ly (5.11)
e k
Under HO in (5.2),j:n has asymptotically a chi-square distribution with p(s-1)t

degrees of freedom, while under the sequence of alternatives {Kn} where

" - k),

Kh $ gk B+ n Yk’ K=ls0045) Zk 1 C C n, T ™ 9, (5.12)

it has the coreesponding non-central distribution with the non-centrality parameter
. = -1

Dp =1, Trace( T (T 8 C) ), (5.13)

where
. 9 -
Fk =(( Y;r) Y}vg')) and §k = lj.mn__mJ n %&k) 3 KEL oy oh 8, (5.14)

which we assune to cxist. Asymptotic optimality results hold under the same

setup as in the later part of Section 4,
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